Exam. Code : 103204 Subject Code : 1110

B.A./B.Sc. $4^{\text {th }}$ Semester
 MATHEMATICS (Solid Geometry)

Paper-II
Time Allowed-Three Hours] [Maximum Marks-50
Note :-Attempt any FIVE questions, selecting at least TWO questions from each section.

SECTION-A

1. (a) Find the equation of the right circular cylinder whose axis is $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z}{3}$ and passes through $(0,0,3)$.
(b) Find the equation of parabolic cylinder whose generator is parallel to the z -axis and which intersects the parabola $y^{2}=4 a x, z=0$.
2. (a) Obtain the equation of right circular cylinder described on the circle through the points ($a, 0,0$), $(0, a, 0),(0,0, a)$ as the guiding circle.
(b) Find the equation of the enveloping cylinder of the sphere $x^{2}+y^{2}+z^{2}+2 x+2 y+2 z+2=0$ and whose generators are parallel to the line

$$
\begin{equation*}
\frac{x}{1}=\frac{y}{-1}=\frac{z}{1} . \tag{5}
\end{equation*}
$$

2666(2519)/EBH-18565 1
(Contd.)
3. (a) Find the equation of the cone with vertex at origin and which passes through the curve given by : $x^{2}+y^{2}+z^{2}+x-2 y+3 z-4=0$ and $x^{2}+y^{2}+z^{2}+2 x-3 y+4 z-5=0$
(b) Show that $33 x^{2}+13 y^{2}-95 z^{2}-144 y z-96 z x-$ $48 x y=0$ represents a right circular cone whose axis is the line $3 x=2 y=z$. Also find the vertical angle.
4. (a) The section of a cone whose vertex is P and guiding curve the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, z=0$ by the plane $x=0$ is a rectangular hyperbola. Show that the locus of P is $\frac{x^{2}}{a^{2}}+\frac{y^{2}+z^{2}}{b^{2}}=1$.
(b) Show that $2 y^{2}-8 y z-4 z x-8 x y+6 x-4 y-2 z+5=0$ represents a cone. Also find the coordinates of vertex of this cone. 5
5. (a) Find the condition that the plane $l x+m y+n z=0$ may touch the cone $2 x^{2}-3 y^{2}+z^{2}=0$ and find the equation of the reciprocal cone.
(b) Find the angle between the lines of sections of the following planes and cones :

$$
3 x+y+5 z=0,6 y z-2 z x+5 x y=0.5
$$

2666(2519)/EBH-18565

SECTION-B

6. Reduce $3 x^{2}-y^{2}-z^{2}+6 y z-6 x+6 y-2 z-2=0$ to standard form. Also find its centre and equation referred to center as origin.

10
7. (a) Write down the equation of the surface of revolution obtained by rotating the curve $\mathrm{y}^{2}+16 \mathrm{z}^{2}=4, \mathrm{x}=0$ about the z -axis.
(b) Reduce the equation $9 x^{2}+4 y^{2}+4 z^{2}+8 y z+$ $12 z x+12 x y+4 x+y+10 z+1=0 . \quad 5$
8. (a) Identify the curve $3 x^{2}+2 y^{2}-30 x-16 y-6 z+$ $107=0$.
(b) The normal at a point P on the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ meets the principal planes in G_{1}, G_{2}, G_{3}. If $P G_{1}^{2}+P G_{2}^{2}+P G_{3}^{2}=k^{2}$, find the locus of P. 5
9. (a) Show that the plane $2 x-4 y-z=3$ touches the paraboloid $x^{2}-2 y^{2}=3 z$ and find the coordinates of the point of contact.
(b) Find the equation of the tangent plane at the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ of the central conicoid $\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}=1$.
10. Prove that $5 x^{2}-16 y^{2}+5 z^{2}+8 y z-14 z x+8 x y+4 x$ $+20 y+4 z-24=0$ represents hyperbolic paraboloid.

